Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment.
نویسندگان
چکیده
Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS2 and WS2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS2 and WS2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.
منابع مشابه
High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition.
One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed durin...
متن کاملRecombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides.
Optoelectronic devices based on two-dimensional (2D) materials have shown tremendous promise over the past few years; however, there are still numerous challenges that need to be overcome to enable their application in devices. These include improving their poor photoluminescence (PL) quantum yield (QY) as well as better understanding of exciton-based recombination kinetics. Recently, we develo...
متن کاملSilicon-nitride photonic circuits interfaced with monolayer MoS2
Articles you may be interested in Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates Appl. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells Appl. Frequency control of photonic crystal membrane resonators by monolayer deposition Appl.
متن کاملPlasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2
Monolayer MoS2 (1L-MoS2) has photoluminescence (PL) properties that can greatly vary via transition between neutral and charged exciton PLs depending on carrier density. Here, for the first time, we present a chemical doping method for reversible transition between neutral and charged excitons of 1L-MoS2 using chlorine-hydrogen-based plasma functionalization. The PL of 1L-MoS2 is drastically in...
متن کاملVapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization.
Monolayers of transition metal dichalcogenides (TMDCs) are atomically thin direct-gap semiconductors with potential applications in nanoelectronics, optoelectronics, and electrochemical sensing. Recent theoretical and experimental efforts suggest that they are ideal systems for exploiting the valley degrees of freedom of Bloch electrons. For example, Dirac valley polarization has been demonstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2017